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Motivations

Data are pervasive and valuable ...

... Little attention to guarantee systems are reliable and safe.

How to obtain strong guarantees?

By using formal methods

Strong guarantees : proof assistants, or

Datacert project 2012-???

Coq formalisation of data-centric languages and systems
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Relational database systems

Most widespread systems

Underlying theory is well known [Codd70]

One standard SQL the relational database programming language

Mature implementations

Oracle, DB2 IBM, SQLServer, Postgresql, MySql, SQLite . . .

Mid term goal: provide a Coq verified SQL’s compiler
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Sources (methodology) and goals

Foundations (studying) relational model and algebra

ANSI/ISO Standard (reading)

1500 pages natural language ... SQL’s description

Mainstream systems, Postgresql and OracleTM (testing)

Reconciling all of them
with strongest possible correctness guarantees (Coq)
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Relational model and algebra

• Information modeling:

through relations and tuples

Structure: relation name and sort (finite set of attributes)

r(a, b) relation name r sort: {a,b}

• Information extraction:

through query languages (relational algebra)
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Relational model and algebra

Two perspectives:

unnamed vs named

r = {(1, 2); (3, 2); (1, 1)} r = {t1; t2; t3}

t1(a) = 1, t1(b) = 2
t2(a) = 3, t2(b) = 2
t3(a) = 1, t3(b) = 1
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Relational model and algebra

unamed (SPC)

q := r | σf (q) | πW (q) | q × q

| q ∪ q | q ∩ q | q \ q

named (SPJR)

q := r | σf (q) | πW (q) | ρg (q) | q ./ q

| q ∪ q | q ∩ q | q \ q
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Relational model and algebra

• σf (q) = {t ∈ q | f (t)}
• πW (q) = {t|W | t ∈ q}
• q1 ./q2 = {t | ∃t1 ∈ q1,∃t2 ∈ q2, t|sort(q1) = t1 ∧ t|sort(q2) = t2}

t1

t2

t

• ρg (q) = {t ′ | ∃t ∈ q,∀a ∈ sort(q), t ′.g(a) = t.a}
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Simple algebraic queries

Assuming tbl1(a,b,c) and tbl2(d,e)

π{a,c}(σb>3(tbl1))

ρ{a→a1;c→c1}(π{a,c}(σb>3(tbl1)))

σb=d∧c=e(tbl1 ./ tbl2)
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SQL: a simple declarative language

SQL “inter-galactic” dialect for manipulating (relational) data

Declarative DSL describe what opposed as how

select expression

from query

where condition

group by expression

having condition

With attribute’s names as first-class citizens

⇒ name-based perspective
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SQL’s compilation
Syntactic analysis SQL → AST

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Optimisation / Query planning ASTsem → ASTphys

See Chantal Keller’s talk at ITP !

Logical rewritings / algebraic equivalences
Physical

auxiliary data structures (B trees, Hash tables etc)
physical algebra – different implementations of operators
data dependent statistics
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SQL’s compilation

This talk

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Providing a formal semantics to SQL

Formally relating SQL’s semantics with a relevant algebra

12 / 49



Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL’s compilation

This talk

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Providing a formal semantics to SQL

Formally relating SQL’s semantics with a relevant algebra

30 years research efforts

[Ceri&al85, Negri&al91, Guagliardo&al17]

[Malecha&al10, Auerbach&al17, Chu&al17]
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SQL: a Simple Declarative Language

Assuming tbl1(a,b,c) and tbl2(d,e)

select a, c from tbl1 where b>3;

π{a,c}(σb>3(tbl1))

select a as a1, c as c1 from tbl1 where b>3;

ρ{a→a1;c→c1}(π{a,c}(σb>3(tbl1)))

select * from tbl1, tbl2 where b=d and c=e;

σb=d∧c=e(tbl1 ./ tbl2)

select b, sum(a) from tbl1 where a= 7 group by b;

γb,sum(a)(σa=7(tbl1))

select b, 2*(a+c), sum(a) from tbl1 where a+b = 7 group by

b, a+c having avg(b+c) > 6;

No corresponding expression in textbooks’ algebras
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SQL: a Simple Declarative Language

Declarative DSL = ... simple

intented not to be Turing complete

But

Not so simple ...
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SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC
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SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

Quoting page 51 of the ISO document attributes are specified by:

“The terms column, field, and attribute refer to structural components of tables, row

types, and structured types, [ ...] in analogous fashion. As the structure of a table

consists of one or more columns, so does the structure of a row type consist of one or

more fields [...] Every structural element, whether a column, a field, or an attribute, is

primarily a name paired with a declared type. The elements of a structure are

ordered. Elements in different positions in the same structure can have the same

declared type but not the same name. [...] in some circumstances [...] the

compatibility [...] is determined solely by considering the declared types of each pair of

elements at the same ordinal position.”
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SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

Enjoys a bag semantics

Manages complex expressions and aggregates

with NULL values
which represent incomplete information

handled by 3-valued logic with unknown

and nested, correlated queries
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Mixes two algebras: the name based SPJR and the unnamed SPC

Enjoys a bag semantics

Manages complex expressions and aggregates

with NULL values
which represent incomplete information

handled by 3-valued logic with unknown

and nested, correlated queries
=⇒ strange behaviours
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SQL: NULL’s (I)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q1: select r.a+2 as b from r;

{| (b = 1+2); (b = NULL+2) |}
{| (b = 3); (b = NULL) |}

NULL is an absorbing element
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SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else

Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used
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SQL: NULL’s (III)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q5: select t.a, count( * ) as c from t group by t.a;

{| (a = NULL, c = 2); (a = 1, c = 1) |}

NULL equals NULL for grouping
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SQL: aggregates, nesting, correlated queries

Designing instances and queries for
testing against Postgresql and OracleTM

t1 t2

a1 b1

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10

a1 b1

2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10

a1 b1

3 1
3 2
3 3
3 4
3 5

a1 b1

4 6
4 7
4 8
4 9
4 10

a2 b2

7 7
7 7
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SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q6: select a1, max(b1) from t1 group by a1;

{∣∣∣∣ (a1 = 1,max = 10); (a1 = 2,max = 10);
(a1 = 3,max = 5); (a1 = 4,max = 10)

∣∣∣∣}

20 / 49
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t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q7: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 2);

sum(1+0*a2): computes the number of tuples in a group

which group?{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)
∣∣}

sum(1+0*a2) is evaluated to 2 for each a2-group
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SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q8: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 10);

{∣∣ ∣∣}
sum(1+0*a2) is evaluated to 2 6= 10 for each a2-group
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sum(1+0*a2) is evaluated to 2 6= 10 for each a2-group
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Q10: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1) = 10);

{∣∣ (a1 = 1); (a1 = 2)
∣∣}

sum(1+0*a1) is evaluated for each a1-group

Conclusion: 1 <> 1+0*a1 in some contexts (since Q9(10) 6= Q10)
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Q11(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1)+sum(1+0*a2) = k);

k = 7 
{∣∣ (a1 = 3); (a1 = 4)

∣∣} k = 12 
{∣∣ (a1 = 1); (a1 = 2)

∣∣}
k 6= 7, k 6= 12 

{∣∣ ∣∣}
Different sub-expressions of same expression are evaluated

in different environments
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ERROR: subquery uses ungrouped column "t1.b1" from outer query

LINE 1: ...sts (select a2 from t2 group by a2 having sum(1+0*b1+0*b2) =
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Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression  get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ;S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ;S1]

s.t. e is built upon A(Si+1) ∪ G (Si ) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL
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SQLCoq Queries
Inductive set op := Union | Intersect | Except.

Inductive select := Select_As : aggterm → attribute → select.

Inductive select item := Select_Star | Select_List : list select → select_item.

Inductive group by := Finest_P | Group_By : list funterm → group_by.

Inductive att renaming :=
Att_As : attribute → attribute → att_renaming.

Inductive att renaming item :=
Att_Ren_Star | Att_Ren_List : list att_renaming → att_renaming_item.

Inductive sql query :=
| Table : relname → sql_query

| Set : set_op → sql_query → sql_query → sql_query

| Select :

(** select *) select_item →
(** from *) list from_item →
(** where *) formula sql_query →
(** group by *) group_by →
(** having *) formula sql_query → sql_query

with from item := From_Item : sql_query → att_renaming_item → sql_from_item.

no optional where, group by, nor having

no where  TTrue

no group by but having  Group_By nil

no group by nor having  Finest_P+ TTrue
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SQLCoq Formulas

Inductive conjunct := And | Or.

Inductive quantifier := All | Any.

Inductive formula (dom : Type) :=
| Conj : conjunct → formula dom → formula dom → formula dom

| Not : formula dom → formula dom

| TTrue : formula dom

| Pred : predicate → list aggterm → formula dom

| Quant : list aggterm → predicate → quantifier → dom → formula dom

| In : list select → dom → formula dom

| Exists : dom → formula dom.

almost FO + in + exists

∀  all

∃  any

in (membership)  ∈ (not a usual predicate over values)

exists  non-emptiness test

parameterised by dom

intended to be a finite domain of interpretation
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Coq mechanised semantics
Simple expressions

(* The type of evaluation environments *)

Definition env type := list (list attribute * group_by * list tuple).

(* get the (unique) binding of each attribute *)

Fixpoint interp dot env (a : attribute) :=
match env with

| nil ⇒ default_value a

| (sa, gb, nil) :: env’ ⇒ interp_dot env’ a

| (sa, gb, t :: l) :: env’ ⇒ if a inS? labels t then (dot t a) else interp_dot env’ a

end.

Fixpoint interp funterm env t :=
match t with

| F_Constant c ⇒ c

| F_Dot a ⇒ interp_dot env a

| F_Expr f l ⇒ interp_symb f (List.map (fun x ⇒ interp_funterm env x) l)

end.
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Coq mechanised semantics
Complex expressions, environments

Fixpoint is built upon G f :=
match f with

| F_Constant _ ⇒ true

| F_Dot _ ⇒ f inS? g

| F_Expr s l ⇒ (f ins? G) || forallb (is_built_upon G) l

end.

Definition is a suitable env la env f :=
is_built_upon

(map (fun a ⇒ F_Dot a) la ++

flat_map (fun slc ⇒ match slc with (_, G, _) ⇒ G end) env) f.

Fixpoint find eval env env f :=
match env with

| nil ⇒ if is_built_upon nil f then Some nil else None

| (la1, g1, l1) :: env’ ⇒
match find_eval_env env’ f with

| Some _ as e ⇒ e

| None ⇒ if is_a_suitable_env la1 env’ f then Some env else None

end

end.

simply models SqHeLL, beginning
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Coq mechanised semantics
Complex expressions, environments

Fixpoint interp aggterm env (ag : aggterm) := match ag with

| A_Expr ft ⇒ (* simple expression without aggregate *)

interp_funterm env ft

| A_fun f lag ⇒
(** simple recursive call in order to evaluate independently the sub-expressions

when the top symbol is a function *)

interp_symb f (List.map (fun x ⇒ interp_aggterm env x) lag)

| A_agg ag ft ⇒
let env’ := if is_empty (att_of_funterm ft)

then (** the expression under ag is a constant *)

Some env

else (** find the outermost suitable level *)

find_eval_env env ft in

let lenv :=
match env’ with

| None | Some nil ⇒
(** this case should not happen for well-formed queries *) nil

| Some ((la1, g1, l1) :: env’’) ⇒
(** the outermost group is split into *)

map (fun t1 ⇒ (la1, g1, t1 :: nil) :: env’’) l1

end in

interp_aggregate ag (List.map (fun e ⇒ interp_funterm e ft) lenv)

end.

simply models SqHeLL, end
irrelevant cases (ill-formed queries) due to totality
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Coq mechanised semantics
parametric Booleans and 3-valued logic

Module Bool. (* parametric Booleans *)

Record Rcd : Type := mk_R {

b : Type;

true : b;

false : b;

andb : b → b → b;

orb : b → b → b;

negb : b → b;

[...]

true_is_true : ∀ b, is_true b = Datatypes.true ↔ b = true }.

End Bool.

Definition Bool2 : Bool.Rcd.

split with bool true false andb orb negb [...]

Inductive bool3 : Type := true3 | false3 | unknown3.

Definition andb3 b1 b2 := [...]

Definition orb3 b1 b2 := [...]

Definition negb3 b := [...]

Definition Bool3 : Bool.Rcd.

split with bool3 true3 false3 andb3 orb3 negb3 [...]

interpretation of formulas parameterised by a Booleans,
 2-valued logic or 3-valued logic

NULLs  3-valued logic 36 / 49
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Coq mechanised semantics
Formulas

Hypothesis B : Bool.Rcd. (* parametric Booleans *)

Hypothesis I : env_type → dom → bagT (* bags of tuples *).

Fixpoint eval formula env f : Bool.b B := match f with

| Conj a f1 f2 ⇒ (interp_conj B a) (eval_formula env f1) (eval_formula env f2)

| Not f ⇒ Bool.negb B (eval_formula env f)

| TTrue ⇒ Bool.true B

| Pred p l ⇒ interp_predicate p (map (interp_aggterm env) l)

| Quant qtf p l sq ⇒ let lt := map (interp_aggterm env) l in

interp_quant B qtf (fun x ⇒ let la := Fset.elements _ (labels T x) in

interp_predicate p (lt ++ map (dot T x) la))

(Febag.elements _ (I env sq))

| In s sq ⇒ let p := (projection env (Select_List s)) in

interp_quant B Any

(fun x ⇒ match Oeset.compare (OTuple T) p x with

| Eq ⇒ if contains_null p then unknown else Bool.true B

| _ ⇒ if (contains_null p || contains_null x) then unknown else Bool.false B end)

(Febag.elements _ (I env sq))

| Exists sq ⇒ if Febag.is_empty _ (I env sq) then Bool.false B else Bool.true B

end.

evaluation parameterised by Booleans
subtleties in In for handling equality for NULLs:

unknown may be unknown3 or false 37 / 49
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Coq mechanised semantics
Queries

Fixpoint eval sql query env (sq : sql_query) {struct sq} :=
match sq with

| Sql_Table tbl ⇒ instance tbl

| Sql_Set o sq1 sq2 ⇒ [...]

| Sql_Select s lsq f1 gby f2 ⇒
let elsq := (** evaluation of the from part *)

List.map (eval_sql_from_item env) lsq in

let cc := (** selection of the from part by the formula f1, with old names *)

Febag.filter _

(fun t ⇒ Bool.is true B (* casting parametric Booleans to Bool2 *)

(eval_sql_formula eval_sql_query (env_t env t) f1))

(N_product_bag elsq) in

(** computation of the groups grouped according to gby *)

let lg1 := make_groups env cc gby in

(** discarding groups according the having clause f2 *)

let lg2 :=
List.filter

(fun g ⇒ Bool.is true B (* casting parametric Booleans to Bool2 *)

(eval_sql_formula eval_sql_query (env_g env gby g) f2))

lg1 in

(** applying the outermost projection and renaming, the select part s *)

Febag.mk_bag BTupleT

(List.map (fun g ⇒ projection (env_g env gby g) s) lg2)

end
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Empirical assessment

Executable semantics  checked against Postgresql and OracleTM

Previous queries and similar ones (up to 4 levels of nesting)

Random instance generator, 5 parameters: number of tables,
number of attributes for each table, max size of a relation’s
instance, max integer value in relations’ instances, proportion of
NULL’s in instances,

Random query generator, 5 parameters: proportion of constants
among expressions, max number of expressions in select, max
number of queries in from, max number of grouping expressions in
group by, max level of nesting
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Relating SQLCoq with an algebra

Define SQLAlg

Extended relational algebra

Enjoying a bag semantics and

Natively accounting for group by having

Hence recovering well known algebraic equivalences
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SQLAlg, a Coq mechanised algebra

Inductive alg query : Type :=
| Q_Empty_Tuple : alg_query

| Q_Table : relname → alg_query

| Q_Set : set_op → alg_query → alg_query → alg_query

| Q_Join : alg_query → alg_query → alg_query

| Q_Pi : list select → alg_query → alg_query

| Q_Sigma : (formula alg_query) → alg_query → alg_query

(* extending the usual γ textbook operator *)

| Q_Gamma :

(* aggregated (output) expressions *) list select →
(* grouping expressions *) list funterm →
(* handling having condition *) (formula alg_query) →
(* query *) alg_query → alg_query.

usual relational algebra + a generalized γ operator: Q_Gamma

formulas are shared with SQLCoq
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SQLAlg’s mechanised semantics

Fixpoint eval alg query env q {struct q} : bagT :=
match q with

| Q_Empty_Tuple ⇒ Febag.singleton _ (empty_tuple T)

| Q_Table r ⇒ instance r

| Q_Set o q1 q2 ⇒ [...]

| Q_Join q1 q2 ⇒ natural_join (eval_alg_query env q1) (eval_alg_query env q2)

| Q_Pi s q ⇒
Febag.map _ _

(fun t ⇒ projection (env_t env t) (Select_List s)) (eval_alg_query env q)

| Q_Sigma f q ⇒
Febag.filter _

(fun t ⇒ Bool.is_true B (eval formula _ eval_alg_query (env_t env t) f))

(eval_alg_query env q)

| Q_Gamma s lf f q ⇒
Febag.mk_bag _

(map (fun l ⇒ projection (env_g env (Group_By lf) l) (Select_List s))

(filter (fun l ⇒ Bool.is_true B

(eval formula _ eval_alg_query (env_g env (Group_By lf) l) f))

(make_groups env (eval_alg_query env q) (Group_By lf))))

end.

environments and formula’s evaluation are shared with SQLCoq
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Equivalence

SQLCoq ≡ SQLAlg
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From SQLCoq to SQLAlg

Fixpoint sql query to alg basesort (sq : sql_query) :=
match sq with

| Sql_Table r ⇒ Q_Table r

| Sql_Set o sq1 sq2 ⇒ [...]

| Sql_Select s lsq f1 g f2 ⇒
match s with

| Select_Star ⇒ [...]

| Select_List s ⇒
let q1 := (** from clause is translated thanks to n-ary natural join *)

N_Q_Join (map sql_item_to_alg lsq) in

let q2 := (** filtering against where condition *)

Q_Sigma (formula_to_alg f1) q1 in

match g with

| Finest_P ⇒
(** no grouping, filtering against having condition, and then evaluation of select *)

Q_Pi s (Q_Sigma (formula_to_alg f2) q2)

| Group_By g ⇒
(** grouping, using extended γ *)

Q_Gamma s g (formula_to_alg f2) q2

end

end

end with [...]

from  ./
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Back translation from SQLAlg to SQLCoq

Hypothesis fresh (la : list attribute) : attribute.

Hypothesis fresh is fresh : ∀ s, Oset.mem_bool (OAtt T) (fresh s) s = false.

Fixpoint alg query to sql (q : alg_query) : sql_query :=
match q with [...]

| Q_Join q1 q2 ⇒
let rho1 := (** fresh names for attributes of q1 *) [...] in

let rho2 := (** fresh names for attributes of q2 *) [...] in

let rho1’ := (** inverse of rho1 *) [...] in

let rho2’ := (** inverse of rho2, over for attributes which do not belong to q1 *) [...] in

let f_join :=
(* formula stating that new names for the same old shared attributes

correspond to the same value : rho1(q1.a) = rho2(q2.a) *) [...] in

Sql_Select (Select_List (rho1’ ++ rho2’))

(From_Item (alg_sql_query_to_sql q1) (Att_Ren_List rho1) ::

From_Item (alg_sql_query_to_sql q2) (Att_Ren_List rho2) :: nil)

f_join Finest_P (Sql_True _)

| Q_Pi s q ⇒ [...]

| Q_Sigma f q ⇒ [...]

| Q_Gamma s g h q ⇒
Sql_Select (Select_List s) (From_Item (alg_query_to_sql q) Att_Ren_Star :: nil)

(Sql_True _) (Group_By g) (alg_formula_to_sql h)

end.

./  from  fresh names needed
45 / 49



Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Equivalence’s theorems

Definition well sorted sql table :=
∀ tbl t, t inBE (instance tbl) → labels t =S= basesort tbl.

Fixpoint all distinct lsa :=
match lsa with

| nil ⇒ true

| sa1 :: lsa ⇒ Fset.is_empty (A T) (sa1 interS (Fset.Union _ lsa)) && all_distinct lsa

end.

Fixpoint well formed q (sq : sql_query) :=
match sq with

| Sql_Table _ ⇒ true

| Sql_Set _ sq1 sq2 ⇒ well_formed_q sq1 && well_formed_q sq2

| Sql_Select s lsq f1 g f2 ⇒
(all distinct (map (fun x => sql from item sort) x) lsq)

&& (forallb (fun x ⇒ match x with From_Item sq _ ⇒ well_formed_q sq end) lsq)

&& (well_formed_f f1) && (well_formed_f f2)

end.

Lemma sql query to alg is sound :

well_sorted_sql_table →

(* cartesian product = natural join thanks to to well-formedness *)

∀ env sq, well formed q sq = true ->

eval_alg_query env (sql_query_to_alg basesort sq) =BE= eval_sql_query env sq.

Lemma alg query to sql is sound :

well_sorted_sql_table →

(* cartesian product = natural join thanks to to fresh names *)

∀ env q, eval_alg_query env q =BE= eval_sql_query env (alg query to sql q).
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Lessons : Coq side

Modelling a real-life language

 pushing Coq to the very limits

 discovering some practical restrictions
with no theoretical reason
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Lessons : Coq side

(* an abstracted version of formula’s sharing between SQL queries and algebraic queries *)

Section FirstVersion.

Hypothesis A : Type.

Inductive (* first version of formula *) b : Type := B : A → b

with (* first version of sql query *) mut : Type := M : b → mut.

End FirstVersion.

Inductive (* first tentative version of algbraic query *) x : Type := X : (b x) → x.

(* Error: Non strictly positive occurrence of "x" in "b x → x". *)

Section SecondVersion.

Hypothesis A : Type.

Inductive (* new version formula *) b’ : Type := B’ : A → b’.

Inductive (* new version of sql query *) mut’ : Type := M’ : b’ → mut’.

End SecondVersion.

Inductive (* new style algebraic query *) x1 : Type := X1 : (b’ x1) → x1.

(*

x1 is defined

x1_rect is defined

x1_ind is defined

x1_rec is defined

*)
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Lessons : DB side

first version : set-semantics  second version: bag-semantics
technical, not a problem

NULL’s at expression level, absorbing elements
at formula level, use 3-valued logic...

not so difficult

real difficulty
complex expressions and nested and correlated queries

environments management

remains to be done:
outer, inner join (syntactic sugar) order by, windows, rank,
recursive queries
like handling regular expressions for strings
more data types: date
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Epilogue

Data centric languages : a fantastic bestiary

NoSQL, Cassandra, MongoDB, Neo4j, etc weird

SQL purposely not Turing complete
 overtime, new primitives and features:

aggregates, nested / correlated queries, functions, NULL’s
 uncontrolled interactions

 departing from its elegant theoretical foundation
 pay tribute to pioneers: Codd, Chamberlin, Boyce

use Coq to design new languages
 completely formalised, clear and well-understood semantics
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