
Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

A Coq mechanised formal semantics for real life
SQL queries

Formally reconciling SQL and bag relational algebra

Véronique Benzaken, Évelyne Contejean

LRI - CNRS - Université Paris Sud

Coq Workshop@Floc18 Oxford 8th of July 2018

1 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Motivations

Data are pervasive and valuable ...

... Little attention to guarantee systems are reliable and safe.

How to obtain strong guarantees?

By using formal methods

Strong guarantees : proof assistants, or

Datacert project 2012-???

Coq formalisation of data-centric languages and systems

2 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Motivations

Data are pervasive and valuable ...

... Little attention to guarantee systems are reliable and safe.

How to obtain strong guarantees?

By using formal methods

Strong guarantees : proof assistants, or

Datacert project 2012-???

Coq formalisation of data-centric languages and systems

2 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Motivations

Data are pervasive and valuable ...

... Little attention to guarantee systems are reliable and safe.

How to obtain strong guarantees?

By using formal methods

Strong guarantees : proof assistants, Coq or Isabelle

Datacert project 2012-???

Coq formalisation of data-centric languages and systems

2 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Motivations

Data are pervasive and valuable ...

... Little attention to guarantee systems are reliable and safe.

How to obtain strong guarantees?

By using formal methods

Strong guarantees : proof assistants, Coq or Isabelle

Datacert project 2012-???

Coq formalisation of data-centric languages and systems

2 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational database systems

Most widespread systems

Underlying theory is well known [Codd70]

One standard SQL the relational database programming language

Mature implementations

Oracle, DB2 IBM, SQLServer, Postgresql, MySql, SQLite . . .

Mid term goal: provide a Coq verified SQL’s compiler

3 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Sources (methodology) and goals

Foundations (studying) relational model and algebra

ANSI/ISO Standard (reading)

1500 pages natural language ... SQL’s description

Mainstream systems, Postgresql and OracleTM (testing)

Reconciling all of them
with strongest possible correctness guarantees (Coq)

4 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Sources (methodology) and goals

Foundations (studying) relational model and algebra

ANSI/ISO Standard (reading)

1500 pages natural language ... SQL’s description

Mainstream systems, Postgresql and OracleTM (testing)

Reconciling all of them
with strongest possible correctness guarantees (Coq)

4 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

• Information modeling:

through relations and tuples

Structure: relation name and sort (finite set of attributes)

r(a, b) relation name r sort: {a,b}

• Information extraction:

through query languages (relational algebra)

5 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

Two perspectives:

unnamed vs named

r = {(1, 2); (3, 2); (1, 1)} r = {t1; t2; t3}

t1(a) = 1, t1(b) = 2
t2(a) = 3, t2(b) = 2
t3(a) = 1, t3(b) = 1

6 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

Two perspectives:

unnamed vs named

r = {(1, 2); (3, 2); (1, 1)} r = {t1; t2; t3}

t1.a = 1, t1.b = 2
t2.a = 3, t2.b = 2
t3.a = 1, t3.b = 1

6 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

unamed (SPC)

q := r | σf (q) | πW (q) | q × q

| q ∪ q | q ∩ q | q \ q

named (SPJR)

q := r | σf (q) | πW (q) | ρg (q) | q ./ q

| q ∪ q | q ∩ q | q \ q

7 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

• σf (q) = {t ∈ q | f (t)}
• πW (q) = {t|W | t ∈ q}
• q1 ./q2 = {t | ∃t1 ∈ q1,∃t2 ∈ q2, t|sort(q1) = t1 ∧ t|sort(q2) = t2}

t1

t2

t

• ρg (q) = {t ′ | ∃t ∈ q,∀a ∈ sort(q), t ′.g(a) = t.a}

8 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relational model and algebra

• σf (q) = {t ∈ q | f (t)}
• πW (q) = {t|W | t ∈ q}
• q1 ./q2 = {t | ∃t1 ∈ q1,∃t2 ∈ q2, t|sort(q1) = t1 ∧ t|sort(q2) = t2}

t1

t2

t

• ρg (q) = {t ′ | ∃t ∈ q,∀a ∈ sort(q), t ′.g(a) = t.a}

8 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Simple algebraic queries

Assuming tbl1(a,b,c) and tbl2(d,e)

π{a,c}(σb>3(tbl1))

ρ{a→a1;c→c1}(π{a,c}(σb>3(tbl1)))

σb=d∧c=e(tbl1 ./ tbl2)

9 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: a simple declarative language

SQL “inter-galactic” dialect for manipulating (relational) data

Declarative DSL describe what opposed as how

select expression

from query

where condition

group by expression

having condition

With attribute’s names as first-class citizens

⇒ name-based perspective

10 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL’s compilation
Syntactic analysis SQL → AST

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Optimisation / Query planning ASTsem → ASTphys

See Chantal Keller’s talk at ITP !

Logical rewritings / algebraic equivalences
Physical

auxiliary data structures (B trees, Hash tables etc)
physical algebra – different implementations of operators
data dependent statistics

11 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL’s compilation
Syntactic analysis SQL → AST

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Optimisation / Query planning ASTsem → ASTphys

See Chantal Keller’s talk at ITP !
Logical rewritings / algebraic equivalences
Physical

auxiliary data structures (B trees, Hash tables etc)
physical algebra – different implementations of operators
data dependent statistics

11 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL’s compilation

This talk

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Providing a formal semantics to SQL

Formally relating SQL’s semantics with a relevant algebra

12 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL’s compilation

This talk

Semantic analysis AST → ASTsem

Textbooks
leaves = relations
nodes = relational algebra operators

Real life depends on DB vendors

Providing a formal semantics to SQL

Formally relating SQL’s semantics with a relevant algebra

30 years research efforts

[Ceri&al85, Negri&al91, Guagliardo&al17]

[Malecha&al10, Auerbach&al17, Chu&al17]

12 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: a Simple Declarative Language

Assuming tbl1(a,b,c) and tbl2(d,e)

select a, c from tbl1 where b>3;

π{a,c}(σb>3(tbl1))

select a as a1, c as c1 from tbl1 where b>3;

ρ{a→a1;c→c1}(π{a,c}(σb>3(tbl1)))

select * from tbl1, tbl2 where b=d and c=e;

σb=d∧c=e(tbl1 ./ tbl2)

select b, sum(a) from tbl1 where a= 7 group by b;

γb,sum(a)(σa=7(tbl1))

select b, 2*(a+c), sum(a) from tbl1 where a+b = 7 group by

b, a+c having avg(b+c) > 6;

No corresponding expression in textbooks’ algebras

13 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: a Simple Declarative Language

Declarative DSL = ... simple

intented not to be Turing complete

But

Not so simple ...

14 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

15 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

Quoting page 51 of the ISO document attributes are specified by:

“The terms column, field, and attribute refer to structural components of tables, row

types, and structured types, [...] in analogous fashion. As the structure of a table

consists of one or more columns, so does the structure of a row type consist of one or

more fields [...] Every structural element, whether a column, a field, or an attribute, is

primarily a name paired with a declared type. The elements of a structure are

ordered. Elements in different positions in the same structure can have the same

declared type but not the same name. [...] in some circumstances [...] the

compatibility [...] is determined solely by considering the declared types of each pair of

elements at the same ordinal position.”

15 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

Enjoys a bag semantics

Manages complex expressions and aggregates

with NULL values
which represent incomplete information

handled by 3-valued logic with unknown

and nested, correlated queries

15 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: not so simple

Based on relational algebra for the select-from-where part

Mixes two algebras: the name based SPJR and the unnamed SPC

Enjoys a bag semantics

Manages complex expressions and aggregates

with NULL values
which represent incomplete information

handled by 3-valued logic with unknown

and nested, correlated queries
=⇒ strange behaviours

15 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (I)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q1: select r.a+2 as b from r;

{| (b = 1+2); (b = NULL+2) |}
{| (b = 3); (b = NULL) |}

NULL is an absorbing element

16 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (I)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q1: select r.a+2 as b from r;

{| (b = 1+2); (b = NULL+2) |}

{| (b = 3); (b = NULL) |}

NULL is an absorbing element

16 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (I)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q1: select r.a+2 as b from r;

{| (b = 1+2); (b = NULL+2) |}
{| (b = 3); (b = NULL) |}

NULL is an absorbing element

16 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else

Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used

17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else

Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used

17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else

Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used

17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else

Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used

17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else
Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used

17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (II)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q2: select r.a from r where r.a not in (select s.a from s);

{t.a | t ∈ r ∧ ¬(t.a ∈ { (a=NULL) })}
{t.a | t ∈ r ∧ (t.a 6= NULL)}

{| |} 1 and NULL are not different from NULL

Q3: select r.a from r where

not exists (select * from s where s.a = r.a);

{t.a | t ∈ r ∧ {u | u ∈ s ∧ u.a = t.a} = ∅}

{| (a = 1); (a = NULL) |} NULL neither equals to anything else
Q4: select r.a from r except select s.a from s;

{ (a = 1) } syntactic equality is used
17 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (III)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q5: select t.a, count(*) as c from t group by t.a;

{| (a = NULL, c = 2); (a = 1, c = 1) |}

NULL equals NULL for grouping

18 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: NULL’s (III)

r = {|(a=1), (a=NULL)|}
s = {|(a=NULL)|}
t = {|(a=1), (a=NULL), (a=NULL)|}

Q5: select t.a, count(*) as c from t group by t.a;

{| (a = NULL, c = 2); (a = 1, c = 1) |}

NULL equals NULL for grouping

18 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

Designing instances and queries for
testing against Postgresql and OracleTM

t1 t2

a1 b1

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10

a1 b1

2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10

a1 b1

3 1
3 2
3 3
3 4
3 5

a1 b1

4 6
4 7
4 8
4 9
4 10

a2 b2

7 7
7 7

19 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q6: select a1, max(b1) from t1 group by a1;

{∣∣∣∣ (a1 = 1,max = 10); (a1 = 2,max = 10);
(a1 = 3,max = 5); (a1 = 4,max = 10)

∣∣∣∣}

20 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q6: select a1, max(b1) from t1 group by a1;

{∣∣∣∣ (a1 = 1,max = 10); (a1 = 2,max = 10);
(a1 = 3,max = 5); (a1 = 4,max = 10)

∣∣∣∣}

20 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q7: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 2);

sum(1+0*a2): computes the number of tuples in a group

which group?{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)
∣∣}

sum(1+0*a2) is evaluated to 2 for each a2-group

21 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q7: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 2);

sum(1+0*a2): computes the number of tuples in a group
which group?

{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)
∣∣}

sum(1+0*a2) is evaluated to 2 for each a2-group

21 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q7: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 2);

sum(1+0*a2): computes the number of tuples in a group
which group?{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)
∣∣}

sum(1+0*a2) is evaluated to 2 for each a2-group

21 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q7: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 2);

sum(1+0*a2): computes the number of tuples in a group
which group?{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)
∣∣}

sum(1+0*a2) is evaluated to 2 for each a2-group

21 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q8: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 10);

{∣∣ ∣∣}
sum(1+0*a2) is evaluated to 2 6= 10 for each a2-group

22 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q8: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 10);{∣∣ ∣∣}

sum(1+0*a2) is evaluated to 2 6= 10 for each a2-group

22 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q8: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a2) = 10);{∣∣ ∣∣}
sum(1+0*a2) is evaluated to 2 6= 10 for each a2-group

22 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q9(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1) is evaluated to 2 for each a2-group

Tentative conclusion: 1+0*a2 = 1

23 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q9(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}

sum(1) is evaluated to 2 for each a2-group

Tentative conclusion: 1+0*a2 = 1

23 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q9(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1) is evaluated to 2 for each a2-group

Tentative conclusion: 1+0*a2 = 1

23 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q9(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1) is evaluated to 2 for each a2-group

Tentative conclusion: 1+0*a2 = 1
23 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q10: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1) = 10);

{∣∣ (a1 = 1); (a1 = 2)
∣∣}

sum(1+0*a1) is evaluated for each a1-group

Conclusion: 1 <> 1+0*a1 in some contexts (since Q9(10) 6= Q10)

24 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q10: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1) = 10);{∣∣ (a1 = 1); (a1 = 2)
∣∣}

sum(1+0*a1) is evaluated for each a1-group

Conclusion: 1 <> 1+0*a1 in some contexts (since Q9(10) 6= Q10)

24 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q10: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1) = 10);{∣∣ (a1 = 1); (a1 = 2)
∣∣}

sum(1+0*a1) is evaluated for each a1-group

Conclusion: 1 <> 1+0*a1 in some contexts (since Q9(10) 6= Q10)

24 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q10: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1) = 10);{∣∣ (a1 = 1); (a1 = 2)
∣∣}

sum(1+0*a1) is evaluated for each a1-group

Conclusion: 1 <> 1+0*a1 in some contexts (since Q9(10) 6= Q10)

24 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q11(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1)+sum(1+0*a2) = k);

k = 7
{∣∣ (a1 = 3); (a1 = 4)

∣∣} k = 12
{∣∣ (a1 = 1); (a1 = 2)

∣∣}
k 6= 7, k 6= 12

{∣∣ ∣∣}
Different sub-expressions of same expression are evaluated

in different environments

25 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q11(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1)+sum(1+0*a2) = k);

k = 7
{∣∣ (a1 = 3); (a1 = 4)

∣∣} k = 12
{∣∣ (a1 = 1); (a1 = 2)

∣∣}
k 6= 7, k 6= 12

{∣∣ ∣∣}

Different sub-expressions of same expression are evaluated
in different environments

25 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q11(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1)+sum(1+0*a2) = k);

k = 7
{∣∣ (a1 = 3); (a1 = 4)

∣∣} k = 12
{∣∣ (a1 = 1); (a1 = 2)

∣∣}
k 6= 7, k 6= 12

{∣∣ ∣∣}
Different sub-expressions of same expression are evaluated

in different environments

25 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q12(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*a2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1+0*a1+0*a2) is evaluated for each a2-group

26 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q12(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*a2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}

sum(1+0*a1+0*a2) is evaluated for each a2-group

26 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q12(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*a2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1+0*a1+0*a2) is evaluated for each a2-group

26 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q13(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*b2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1+0*a1+0*b2) is evaluated for each a2-group

27 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q13(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*b2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}

sum(1+0*a1+0*b2) is evaluated for each a2-group

27 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q13(k): select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*a1+0*b2) = k);

k = 2
{∣∣ (a1 = 1); (a1 = 2); (a1 = 3); (a1 = 4)

∣∣}
k 6= 2

{∣∣ ∣∣}
sum(1+0*a1+0*b2) is evaluated for each a2-group

27 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q14: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*b1+0*b2) = 10);

ERROR: subquery uses ungrouped column "t1.b1" from outer query

LINE 1: ...sts (select a2 from t2 group by a2 having sum(1+0*b1+0*b2) =

28 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q14: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*b1+0*b2) = 10);

ERROR: subquery uses ungrouped column "t1.b1" from outer query

LINE 1: ...sts (select a2 from t2 group by a2 having sum(1+0*b1+0*b2) =

28 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q15: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*b1+0*a2) = 12);

ERROR: subquery uses ungrouped column "t1.b1" from outer query

LINE 1: ...sts (select a2 from t2 group by a2 having sum(1+0*b1+0*a2) =

29 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQL: aggregates, nesting, correlated queries

t1 = {|(a1 = 1, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 2, b1 = i) | 1 ≤ i ≤ 10|}∪
{|(a1 = 3, b1 = i) | 1 ≤ i ≤ 5|}∪
{|(a1 = 4, b1 = i) | 6 ≤ i ≤ 10|}∪

t2 = {|(a2 = 7, b2 = 7), (a2 = 7, b2 = 7)|}

Q15: select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2

having sum(1+0*b1+0*a2) = 12);

ERROR: subquery uses ungrouped column "t1.b1" from outer query

LINE 1: ...sts (select a2 from t2 group by a2 having sum(1+0*b1+0*a2) =

29 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ;S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ;S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL

30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ;S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ;S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL

30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ;S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ;S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL

30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ;S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ;S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL

30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ; S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ; S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL

30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Environments

A stack of slices, nesting levels, innermost on top

(attributes, grouping expressions, group of tuples)

Evaluation

• simple expression get the (unique) binding of each attribute

• complex expression function(e)
 evaluate independently each ei of (e)

• complex expression aggregate(cst)

 use innermost slice (cardinality)

• complex expression aggregate(e) in [Sn; . . . ; S1]
 find the smallest ”suitable” suffix [Si+1; Si , ; . . . ; S1]

s.t. e is built upon A(Si+1) ∪ G (Si) ∪ . . . ∪ G (S1)
 split tuples of (i + 1)th slice

 [(A(Si+1),G (Si+1), [ti+1]);Si ; . . . ; S1] ti+1 ∈ T (Si+1)

SQHeLL
30 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQLCoq Queries
Inductive set op := Union | Intersect | Except.

Inductive select := Select_As : aggterm → attribute → select.

Inductive select item := Select_Star | Select_List : list select → select_item.

Inductive group by := Finest_P | Group_By : list funterm → group_by.

Inductive att renaming :=
Att_As : attribute → attribute → att_renaming.

Inductive att renaming item :=
Att_Ren_Star | Att_Ren_List : list att_renaming → att_renaming_item.

Inductive sql query :=
| Table : relname → sql_query

| Set : set_op → sql_query → sql_query → sql_query

| Select :

(** select *) select_item →
(** from *) list from_item →
(** where *) formula sql_query →
(** group by *) group_by →
(** having *) formula sql_query → sql_query

with from item := From_Item : sql_query → att_renaming_item → sql_from_item.

no optional where, group by, nor having

no where TTrue

no group by but having Group_By nil

no group by nor having Finest_P+ TTrue
31 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQLCoq Formulas

Inductive conjunct := And | Or.

Inductive quantifier := All | Any.

Inductive formula (dom : Type) :=
| Conj : conjunct → formula dom → formula dom → formula dom

| Not : formula dom → formula dom

| TTrue : formula dom

| Pred : predicate → list aggterm → formula dom

| Quant : list aggterm → predicate → quantifier → dom → formula dom

| In : list select → dom → formula dom

| Exists : dom → formula dom.

almost FO + in + exists

∀ all

∃ any

in (membership) ∈ (not a usual predicate over values)

exists non-emptiness test

parameterised by dom

intended to be a finite domain of interpretation

32 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
Simple expressions

(* The type of evaluation environments *)

Definition env type := list (list attribute * group_by * list tuple).

(* get the (unique) binding of each attribute *)

Fixpoint interp dot env (a : attribute) :=
match env with

| nil ⇒ default_value a

| (sa, gb, nil) :: env’ ⇒ interp_dot env’ a

| (sa, gb, t :: l) :: env’ ⇒ if a inS? labels t then (dot t a) else interp_dot env’ a

end.

Fixpoint interp funterm env t :=
match t with

| F_Constant c ⇒ c

| F_Dot a ⇒ interp_dot env a

| F_Expr f l ⇒ interp_symb f (List.map (fun x ⇒ interp_funterm env x) l)

end.

33 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
Complex expressions, environments

Fixpoint is built upon G f :=
match f with

| F_Constant _ ⇒ true

| F_Dot _ ⇒ f inS? g

| F_Expr s l ⇒ (f ins? G) || forallb (is_built_upon G) l

end.

Definition is a suitable env la env f :=
is_built_upon

(map (fun a ⇒ F_Dot a) la ++

flat_map (fun slc ⇒ match slc with (_, G, _) ⇒ G end) env) f.

Fixpoint find eval env env f :=
match env with

| nil ⇒ if is_built_upon nil f then Some nil else None

| (la1, g1, l1) :: env’ ⇒
match find_eval_env env’ f with

| Some _ as e ⇒ e

| None ⇒ if is_a_suitable_env la1 env’ f then Some env else None

end

end.

simply models SqHeLL, beginning

34 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
Complex expressions, environments

Fixpoint interp aggterm env (ag : aggterm) := match ag with

| A_Expr ft ⇒ (* simple expression without aggregate *)

interp_funterm env ft

| A_fun f lag ⇒
(** simple recursive call in order to evaluate independently the sub-expressions

when the top symbol is a function *)

interp_symb f (List.map (fun x ⇒ interp_aggterm env x) lag)

| A_agg ag ft ⇒
let env’ := if is_empty (att_of_funterm ft)

then (** the expression under ag is a constant *)

Some env

else (** find the outermost suitable level *)

find_eval_env env ft in

let lenv :=
match env’ with

| None | Some nil ⇒
(** this case should not happen for well-formed queries *) nil

| Some ((la1, g1, l1) :: env’’) ⇒
(** the outermost group is split into *)

map (fun t1 ⇒ (la1, g1, t1 :: nil) :: env’’) l1

end in

interp_aggregate ag (List.map (fun e ⇒ interp_funterm e ft) lenv)

end.

simply models SqHeLL, end
irrelevant cases (ill-formed queries) due to totality

35 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
parametric Booleans and 3-valued logic

Module Bool. (* parametric Booleans *)

Record Rcd : Type := mk_R {

b : Type;

true : b;

false : b;

andb : b → b → b;

orb : b → b → b;

negb : b → b;

[...]

true_is_true : ∀ b, is_true b = Datatypes.true ↔ b = true }.

End Bool.

Definition Bool2 : Bool.Rcd.

split with bool true false andb orb negb [...]

Inductive bool3 : Type := true3 | false3 | unknown3.

Definition andb3 b1 b2 := [...]

Definition orb3 b1 b2 := [...]

Definition negb3 b := [...]

Definition Bool3 : Bool.Rcd.

split with bool3 true3 false3 andb3 orb3 negb3 [...]

interpretation of formulas parameterised by a Booleans,
 2-valued logic or 3-valued logic

NULLs 3-valued logic 36 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
Formulas

Hypothesis B : Bool.Rcd. (* parametric Booleans *)

Hypothesis I : env_type → dom → bagT (* bags of tuples *).

Fixpoint eval formula env f : Bool.b B := match f with

| Conj a f1 f2 ⇒ (interp_conj B a) (eval_formula env f1) (eval_formula env f2)

| Not f ⇒ Bool.negb B (eval_formula env f)

| TTrue ⇒ Bool.true B

| Pred p l ⇒ interp_predicate p (map (interp_aggterm env) l)

| Quant qtf p l sq ⇒ let lt := map (interp_aggterm env) l in

interp_quant B qtf (fun x ⇒ let la := Fset.elements _ (labels T x) in

interp_predicate p (lt ++ map (dot T x) la))

(Febag.elements _ (I env sq))

| In s sq ⇒ let p := (projection env (Select_List s)) in

interp_quant B Any

(fun x ⇒ match Oeset.compare (OTuple T) p x with

| Eq ⇒ if contains_null p then unknown else Bool.true B

| _ ⇒ if (contains_null p || contains_null x) then unknown else Bool.false B end)

(Febag.elements _ (I env sq))

| Exists sq ⇒ if Febag.is_empty _ (I env sq) then Bool.false B else Bool.true B

end.

evaluation parameterised by Booleans
subtleties in In for handling equality for NULLs:

unknown may be unknown3 or false 37 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Coq mechanised semantics
Queries

Fixpoint eval sql query env (sq : sql_query) {struct sq} :=
match sq with

| Sql_Table tbl ⇒ instance tbl

| Sql_Set o sq1 sq2 ⇒ [...]

| Sql_Select s lsq f1 gby f2 ⇒
let elsq := (** evaluation of the from part *)

List.map (eval_sql_from_item env) lsq in

let cc := (** selection of the from part by the formula f1, with old names *)

Febag.filter _

(fun t ⇒ Bool.is true B (* casting parametric Booleans to Bool2 *)

(eval_sql_formula eval_sql_query (env_t env t) f1))

(N_product_bag elsq) in

(** computation of the groups grouped according to gby *)

let lg1 := make_groups env cc gby in

(** discarding groups according the having clause f2 *)

let lg2 :=
List.filter

(fun g ⇒ Bool.is true B (* casting parametric Booleans to Bool2 *)

(eval_sql_formula eval_sql_query (env_g env gby g) f2))

lg1 in

(** applying the outermost projection and renaming, the select part s *)

Febag.mk_bag BTupleT

(List.map (fun g ⇒ projection (env_g env gby g) s) lg2)

end

38 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Empirical assessment

Executable semantics checked against Postgresql and OracleTM

Previous queries and similar ones (up to 4 levels of nesting)

Random instance generator, 5 parameters: number of tables,
number of attributes for each table, max size of a relation’s
instance, max integer value in relations’ instances, proportion of
NULL’s in instances,

Random query generator, 5 parameters: proportion of constants
among expressions, max number of expressions in select, max
number of queries in from, max number of grouping expressions in
group by, max level of nesting

39 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Relating SQLCoq with an algebra

Define SQLAlg

Extended relational algebra

Enjoying a bag semantics and

Natively accounting for group by having

Hence recovering well known algebraic equivalences

40 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQLAlg, a Coq mechanised algebra

Inductive alg query : Type :=
| Q_Empty_Tuple : alg_query

| Q_Table : relname → alg_query

| Q_Set : set_op → alg_query → alg_query → alg_query

| Q_Join : alg_query → alg_query → alg_query

| Q_Pi : list select → alg_query → alg_query

| Q_Sigma : (formula alg_query) → alg_query → alg_query

(* extending the usual γ textbook operator *)

| Q_Gamma :

(* aggregated (output) expressions *) list select →
(* grouping expressions *) list funterm →
(* handling having condition *) (formula alg_query) →
(* query *) alg_query → alg_query.

usual relational algebra + a generalized γ operator: Q_Gamma

formulas are shared with SQLCoq

41 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

SQLAlg’s mechanised semantics

Fixpoint eval alg query env q {struct q} : bagT :=
match q with

| Q_Empty_Tuple ⇒ Febag.singleton _ (empty_tuple T)

| Q_Table r ⇒ instance r

| Q_Set o q1 q2 ⇒ [...]

| Q_Join q1 q2 ⇒ natural_join (eval_alg_query env q1) (eval_alg_query env q2)

| Q_Pi s q ⇒
Febag.map _ _

(fun t ⇒ projection (env_t env t) (Select_List s)) (eval_alg_query env q)

| Q_Sigma f q ⇒
Febag.filter _

(fun t ⇒ Bool.is_true B (eval formula _ eval_alg_query (env_t env t) f))

(eval_alg_query env q)

| Q_Gamma s lf f q ⇒
Febag.mk_bag _

(map (fun l ⇒ projection (env_g env (Group_By lf) l) (Select_List s))

(filter (fun l ⇒ Bool.is_true B

(eval formula _ eval_alg_query (env_g env (Group_By lf) l) f))

(make_groups env (eval_alg_query env q) (Group_By lf))))

end.

environments and formula’s evaluation are shared with SQLCoq

42 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Equivalence

SQLCoq ≡ SQLAlg

43 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

From SQLCoq to SQLAlg

Fixpoint sql query to alg basesort (sq : sql_query) :=
match sq with

| Sql_Table r ⇒ Q_Table r

| Sql_Set o sq1 sq2 ⇒ [...]

| Sql_Select s lsq f1 g f2 ⇒
match s with

| Select_Star ⇒ [...]

| Select_List s ⇒
let q1 := (** from clause is translated thanks to n-ary natural join *)

N_Q_Join (map sql_item_to_alg lsq) in

let q2 := (** filtering against where condition *)

Q_Sigma (formula_to_alg f1) q1 in

match g with

| Finest_P ⇒
(** no grouping, filtering against having condition, and then evaluation of select *)

Q_Pi s (Q_Sigma (formula_to_alg f2) q2)

| Group_By g ⇒
(** grouping, using extended γ *)

Q_Gamma s g (formula_to_alg f2) q2

end

end

end with [...]

from ./

44 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Back translation from SQLAlg to SQLCoq

Hypothesis fresh (la : list attribute) : attribute.

Hypothesis fresh is fresh : ∀ s, Oset.mem_bool (OAtt T) (fresh s) s = false.

Fixpoint alg query to sql (q : alg_query) : sql_query :=
match q with [...]

| Q_Join q1 q2 ⇒
let rho1 := (** fresh names for attributes of q1 *) [...] in

let rho2 := (** fresh names for attributes of q2 *) [...] in

let rho1’ := (** inverse of rho1 *) [...] in

let rho2’ := (** inverse of rho2, over for attributes which do not belong to q1 *) [...] in

let f_join :=
(* formula stating that new names for the same old shared attributes

correspond to the same value : rho1(q1.a) = rho2(q2.a) *) [...] in

Sql_Select (Select_List (rho1’ ++ rho2’))

(From_Item (alg_sql_query_to_sql q1) (Att_Ren_List rho1) ::

From_Item (alg_sql_query_to_sql q2) (Att_Ren_List rho2) :: nil)

f_join Finest_P (Sql_True _)

| Q_Pi s q ⇒ [...]

| Q_Sigma f q ⇒ [...]

| Q_Gamma s g h q ⇒
Sql_Select (Select_List s) (From_Item (alg_query_to_sql q) Att_Ren_Star :: nil)

(Sql_True _) (Group_By g) (alg_formula_to_sql h)

end.

./ from fresh names needed
45 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Equivalence’s theorems

Definition well sorted sql table :=
∀ tbl t, t inBE (instance tbl) → labels t =S= basesort tbl.

Fixpoint all distinct lsa :=
match lsa with

| nil ⇒ true

| sa1 :: lsa ⇒ Fset.is_empty (A T) (sa1 interS (Fset.Union _ lsa)) && all_distinct lsa

end.

Fixpoint well formed q (sq : sql_query) :=
match sq with

| Sql_Table _ ⇒ true

| Sql_Set _ sq1 sq2 ⇒ well_formed_q sq1 && well_formed_q sq2

| Sql_Select s lsq f1 g f2 ⇒
(all distinct (map (fun x => sql from item sort) x) lsq)

&& (forallb (fun x ⇒ match x with From_Item sq _ ⇒ well_formed_q sq end) lsq)

&& (well_formed_f f1) && (well_formed_f f2)

end.

Lemma sql query to alg is sound :

well_sorted_sql_table →

(* cartesian product = natural join thanks to to well-formedness *)

∀ env sq, well formed q sq = true ->

eval_alg_query env (sql_query_to_alg basesort sq) =BE= eval_sql_query env sq.

Lemma alg query to sql is sound :

well_sorted_sql_table →

(* cartesian product = natural join thanks to to fresh names *)

∀ env q, eval_alg_query env q =BE= eval_sql_query env (alg query to sql q).

46 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Equivalence’s theorems

Definition well sorted sql table :=
∀ tbl t, t inBE (instance tbl) → labels t =S= basesort tbl.

Fixpoint all distinct lsa :=
match lsa with

| nil ⇒ true

| sa1 :: lsa ⇒ Fset.is_empty (A T) (sa1 interS (Fset.Union _ lsa)) && all_distinct lsa

end.

Fixpoint well formed q (sq : sql_query) :=
match sq with

| Sql_Table _ ⇒ true

| Sql_Set _ sq1 sq2 ⇒ well_formed_q sq1 && well_formed_q sq2

| Sql_Select s lsq f1 g f2 ⇒
(all distinct (map (fun x => sql from item sort) x) lsq)

&& (forallb (fun x ⇒ match x with From_Item sq _ ⇒ well_formed_q sq end) lsq)

&& (well_formed_f f1) && (well_formed_f f2)

end.

Lemma sql query to alg is sound :

well_sorted_sql_table → (* cartesian product = natural join thanks to to well-formedness *)

∀ env sq, well formed q sq = true ->

eval_alg_query env (sql_query_to_alg basesort sq) =BE= eval_sql_query env sq.

Lemma alg query to sql is sound :

well_sorted_sql_table →

(* cartesian product = natural join thanks to to fresh names *)

∀ env q, eval_alg_query env q =BE= eval_sql_query env (alg query to sql q).

46 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Equivalence’s theorems

Definition well sorted sql table :=
∀ tbl t, t inBE (instance tbl) → labels t =S= basesort tbl.

Fixpoint all distinct lsa :=
match lsa with

| nil ⇒ true

| sa1 :: lsa ⇒ Fset.is_empty (A T) (sa1 interS (Fset.Union _ lsa)) && all_distinct lsa

end.

Fixpoint well formed q (sq : sql_query) :=
match sq with

| Sql_Table _ ⇒ true

| Sql_Set _ sq1 sq2 ⇒ well_formed_q sq1 && well_formed_q sq2

| Sql_Select s lsq f1 g f2 ⇒
(all distinct (map (fun x => sql from item sort) x) lsq)

&& (forallb (fun x ⇒ match x with From_Item sq _ ⇒ well_formed_q sq end) lsq)

&& (well_formed_f f1) && (well_formed_f f2)

end.

Lemma sql query to alg is sound :

well_sorted_sql_table → (* cartesian product = natural join thanks to to well-formedness *)

∀ env sq, well formed q sq = true ->

eval_alg_query env (sql_query_to_alg basesort sq) =BE= eval_sql_query env sq.

Lemma alg query to sql is sound :

well_sorted_sql_table → (* cartesian product = natural join thanks to to fresh names *)

∀ env q, eval_alg_query env q =BE= eval_sql_query env (alg query to sql q).

46 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Lessons : Coq side

Modelling a real-life language

 pushing Coq to the very limits

 discovering some practical restrictions
with no theoretical reason

47 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Lessons : Coq side

(* an abstracted version of formula’s sharing between SQL queries and algebraic queries *)

Section FirstVersion.

Hypothesis A : Type.

Inductive (* first version of formula *) b : Type := B : A → b

with (* first version of sql query *) mut : Type := M : b → mut.

End FirstVersion.

Inductive (* first tentative version of algbraic query *) x : Type := X : (b x) → x.

(* Error: Non strictly positive occurrence of "x" in "b x → x". *)

Section SecondVersion.

Hypothesis A : Type.

Inductive (* new version formula *) b’ : Type := B’ : A → b’.

Inductive (* new version of sql query *) mut’ : Type := M’ : b’ → mut’.

End SecondVersion.

Inductive (* new style algebraic query *) x1 : Type := X1 : (b’ x1) → x1.

(*

x1 is defined

x1_rect is defined

x1_ind is defined

x1_rec is defined

*)

48 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Lessons : DB side

first version : set-semantics second version: bag-semantics
technical, not a problem

NULL’s at expression level, absorbing elements
at formula level, use 3-valued logic...

not so difficult

real difficulty
complex expressions and nested and correlated queries

environments management

remains to be done:
outer, inner join (syntactic sugar) order by, windows, rank,
recursive queries
like handling regular expressions for strings
more data types: date

49 / 49

Introduction Foundations SQL’s compilation Inside SQL SQLCoq SQLAlg Equivalence Conclusions

Epilogue

Data centric languages : a fantastic bestiary

NoSQL, Cassandra, MongoDB, Neo4j, etc weird

SQL purposely not Turing complete
 overtime, new primitives and features:

aggregates, nested / correlated queries, functions, NULL’s
 uncontrolled interactions

 departing from its elegant theoretical foundation
 pay tribute to pioneers: Codd, Chamberlin, Boyce

use Coq to design new languages
 completely formalised, clear and well-understood semantics

50 / 49

	Introduction
	Foundations
	SQL's compilation
	Inside SQL
	SQLCoq
	SQLAlg
	Equivalence
	Conclusions

